STATISTICAL STUDY OF A LARGE STRUCTURAL FILE BASED ON THE MENDELEEV TABLE

Michel Petitjean and Jacques Emile Dubois
ITODYS (Institut de Topologie et de Dynamique des Systèmes), de l'Université Paris 7, associé au CNRS, 1 rue Guy de la Brosse, 75005 Paris, France

Received July 31, 1989
Accepted November 7, 1989

Dedicated to Professor Otto Exner on the occasion of his 65th birthday.

The atom or element content of a large structural file is considered through relations between the occurrences of the elements and their geometric distribution obtained by correspondence analysis over the Mendeleev periodic table, which is considered as a rectangular (7×32) contingency table. The potential of various geometric tools is explored with different CAS files.

The chemical knowledge inherent in large structural files is difficult to apprehend. The number of parameters increases drastically with precision. The simplest information contained in a file is the atom, element of a well defined classification. This highly generic parameter allows simple handling of large amounts of data. We explore a method which is an alternative and a complement to the univariate analysis consisting of the list of atoms and their occurrences, where the element positions in the Mendeleev table is omitted. Considering the type of input data, no new interpretation may be expected; the interest rather lies in pointing out classical features differently and in establishing a basis for further possible investigation.

Elemental composition statistics coming from the CAS file in 1967, 1974, 1979 and 1987 were published ${ }^{1}$, giving the statistical weights of the elements. In this paper, a large CAS subfile available at the ITODYS and containing 3424428 compounds registered up to July 1978 is investigated (incompletely defined structures and coordination compounds were not taken into account in order to preserve homogeneity of handling and use). The distribution of each of the 103 elements has been considered.

The most interesting one is the carbon distribution (mean 16.985, standard deviation 9.561): see Table I. The two distributions defined with even and odd values are quasi-identical with a even/odd balance of about 53.0-47.0 (37403 compounds without carbon are not included here).

The hydrogen distribution also offers a greater set of even values which may be explained by the abundance and the odd valency of hydrogen (according to graph

Table I
The carbon distribution in the 3424428 CAS compound file

Atom	Compounds	Atom	Compounds	Atom	Compounds	Atom	Compounds
1	7866	43	4204	85	143	127	25
2	15103	44	5562	86	183	128	29
3	20660	45	3690	87	135	129	36
4	37579	46	4112	88	217	130	36
5	47194	47	2495	89	127	131	37
6	84992	48	4069	90	199	132	51
7	93749	49	1973	91	125	133	34
8	129229	50	2756	92	121	134	50
9	146038	51	1787	93	118	135	30
10	187807	52	2244	94	106	136	59
11	175058	53	1372	95	121	137	40
12	202276	54	2145	96	176	138	31
13	181448	55	1344	97	107	139	38
14	197990	56	1664	98	144	140	36
15	184784	57	1208	99	121	141	29
16	187214	58	1285	100	122	142	50
17	157197	59	783	101	89	143	31
18	159743	60	1407	102	98	144	47
19	135080	61	727	103	68	145	31
20	140901	62	1002	104	83	146	29
21	120291	63	752	105	63	147	29
22	111367	64	911	106	73	148	36
23	85749	65	604	107	56	149	23
24	82790	66	793	108	111	150	45
25	59191	67	395	109	58	151	40
26	57846	68	682	110	72	152	23
27	47725	69	440	111	60	153	28
28	45445	70	567	112	51	154	36
29	32856	71	315	113	49	155	21
30	36803	72	704	114	67	156	18
31	22545	73	300	115	46	157	15
32	24253	74	330	116	47	158	20
33	16332	75	289	117	55	159	23
34	18537	76	436	118	46	160	14
35	11373	77	234	119	36	161	9
36	14993	78	370	120	68	162	11
37	8459	79	208	121	41	163	10
38	9759	80	344	122	45	164	12
39	6548	81	244	123	39	165	6
40	8958	82	267	124	43	166	4
41	5260	83	140	125	41	167	3
42	7534	84	280	126	37	168	11

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

Table I
(Continued)

Atom	Compounds	Atom	Compounds	Atom	Compounds	Atom	Compounds
		8	176	2	183	3	196
169	8	177	6	185	1	198	2
170	3	178	3	187	1	199	1
171	2	179	1	188	1	200	1
172	7	180	6	189	3	206	1
173	1	181	3	190	3	208	1
174	4	182	1	191	1	220	1
175							

theory, there is an even number of odd-connected nodes). The distribution of many data registered in the file has also been obtained: bonds, components, valencies, charges, isotopes, and other data depending or not on the recording mode of a compound.

When the total number of each element is obtained we suggest a statistical view of the Mendeleev table, giving more than the classical ordering of the 103 elements, from the most to the least abundant. Either alphanumeric or graphic presentations of the results are available with the technique described below.

METHODS AND RESULTS

Performing Correspondence Analysis

We show here the results of relations carried out on the most elementary level of chemical knowledge, that of the atom. The methodological tools issued from correspondence analysis are used in this paper for the first time in this field.

Correspondence analysis is a multivariate exploratory technique devoted to contingency table analysis (see refs ${ }^{2,3}$ for theoretical aspects and mathematical results). This technique is similar to PCA (principal component analysis), but applied to categorical data; the contingency table is the Mendeleev table, described with two categorical variables (see Tables II and III): the period of the element (7 categories), and the chemical family (32 categories). This rectangular formatting of the periodic table is conventionally obtained by assigning a zero value to non-pertinent positions (this 2D-presentation shows the occurrences as a potential third dimension).

Compared to PCA, the contingency table may be considered as a set of 32 individuals described with 7 continuous variables, or a set of 7 individuals described with 32 continuous variables; both PCA (individuals are weighed, and variables are weighed: see refs ${ }^{2,3}$) would give the same 7 eigenvalues. Then eigenvalues and vectors
are computed (Table IV). The highest eigenvalue is 1 for every contingency table, so there are only $7-1=6$ factorial axes. Each of the 148815839 atoms of the file now has its 6 -dimensional coordinates, but the coordinates of the atoms having the same atomic number are identical. There are then only 103 different points in the factorial space, each point being one of the 103 elements of the Mendeleev table.

Table II
Occurrence of the elements in the Mendeleev table

H	70908654	Kr	200	Lu	366
He	51	Rb	1338	Hf	375
Li	7668	Sr	1138	Ta	628
Be	654	Y	626	W	1746
B	66864	Zr	1219	Re	585
C	57528231	Nb	577	Os	333
N	5820786	Mo	2295	Ir	265
O	10568323	Tc	234	Pt	542
F	767626	Ru	435	Au	443
Ne	70	Rh	397	Hg	9047
Na	48281	Pd	557	Tl	1796
Mg	4522	Ag	2441	Pb	3477
Al	4773	Cd	1587	Bi	1094
Si	124453	In	625	Po	162
P	233598	Sn	17823	At	156
S	1101733	Sb	4214	Rn	73
Cl	1110863	Te	3050	Fr	79
Ar	86	I	94361	Ra	108
K	14964	Xe	317	Ac	84
Ca	4649	Cs	1711	Th	659
Sc	480	Ba	2971	Pa	156
Ti	2739	La	907	U	1230
V	1816	Ce	812	Np	302
Cr	2625	Pr	669	Pu	321
Mn	1649	Nd	776	Am	221
Fe	5661	Pm	118	Cm	113
Co	2681	Sm	751.	Bk	90
Ni	2444	Eu	596	Cf	98
Cu	3934	Gd	584	Es	83
Zn	3827	Tb	409	Fm	72
Ga	708	Dy	504	Md	56
Ge	8895	Ho	397	No	61
As	12560	Er	530	Lr	51
Se	20508	Tm	340		
Br	257583	Yb	499		

The projection of the points in the first factorial planes is given in Fig. 1; it is possible, just as for PCA, to interpret the factorial axes. The first axis shows an opposition between most and least abundant elements, and the second shows an opposition between low and high atomic numbers; the actinides group and the lanthanides group are far from other elements. The geometrical repartition of these 103 points is a picture of the statistical content of the Mendeleev table, suitable for comparison with other files or subfiles, and for following the chronological evolution of a file.

Table III
The contingency table: the 7 rows and 32 columns are exchanged for clarity

51	70	86	200	317	73	-
--	767626	1110863	257583	94361	156	-
--	10568323	1101733	20508	3050	162	-
--	5820786	233598	12560	4214	1094	-
--.	57528231	124453	8895	17823	3477	--
-	66864	4773	708	625	1796	-
-	-	-	3827	1587	9047	-
-	--	-	3934	2441	443	-
-	-	...	2444	557	542	-
-	-	\cdots	2681	397	265	-
-	-	-	5661	435	333	-
-	-	-	1649	234	585	-
-	-	-	2625	2295	1746	-
-	-	--	1816	577	628	-
-	-	-	2739	1219	375	-
-	-	-	-	-	366	51
-	-	-	-	-	499	61
-	-	-	-	-	340	56
--	-	-	-	-	530	72
-	-	-	-	-	397	83
-	-	-	-	-	504	98
-	-	-	-	-	409	90
-	-	-	-	-	584	113
-	-	-	-	-	596	221
-	-	-	--	-	751	321
-	-	-	-	-	118	302
-	-	-	-	-	776	1230
-	-	-	-	-	669	156
-	-	--	-	-	812	659
--	-	-	480	626	907	84
-	654	4522	4649	1138	2971	109
70908654	7668	48281	14964	1338	1711	78

Convex Hulls and Peeling

It is difficult to provide a simple description of a 6 -dimensional set of points without altering information. For a one-dimensional set, a possible description is the ordering of the points, pointing out the extremal values; for a multidimensional

Table IV

Eigenvalues and inertia percent

Eigenvalues (except trivial value 1)	Associated cumulated inertia percent
0.998074	$45 \cdot 054 \%$
$0 \cdot 586131$	$71 \cdot 512 \%$
0.364415	$87 \cdot 962 \%$
$0 \cdot 218656$	97.833%
0.041272	99.696%
0.006742	$100 \cdot 000 \%$

Fig. 1
The 103 atomic symbols in the first factorial plane (axis 1 vertical, axis 2 horizontal)
set, it is also possible to give extremal values and a partial ordering. Extremal values are, mathematically speaking, the extremal points of the convex hull of the set.

The convex hull of a set of points is the intersection of all the convex sets containing the points; it is also the smallest polyhedron containing the points. The vertices of this polyhedron are called the extremal points. This polyhedral hull offers a simple description of the shape of the set.

After the convex hull has been computed, the set of the internal points is considered. This new set also has a convex hull, enclosed in the first one; we then consider the new internal points, and so on, until there are no remaining points. This process, called peeling, has been used for multivariate data ordering ${ }^{4-6}$, and is suitable for describing the wide set.

When the points are projected on a sub-space, it is known that the convex hull of the projections is also the projection of the convex hull. Thus every bidimensional convex hull computed in a factorial plane can provide a display of the projection of the multidimensional convex hull (however, the peeling of the bidimensional set does not give the projection of the peeling of the multidimensional set, because some extremal points may be on none of the factorial planes).

Fig. 2
Peeling of the 103 atomic symbols in the first factorial plane (axis 1 vertical, axis 2 horizontal)

The peeling in the first factorial plane is shown in Fig. 2; extremal points in this first factorial plane are ordered trigonometrically (Table V). Since all the 148815839 atoms of the file take only the 103 positions of the elements in the factorial space, the convex hull of the 103 elements is also the convex hull of the 148815839 atoms.

We point out that the peeling of the 148815839 atoms (and not of their 103 positions) provides a different set of successive convex hulls, together with an ordering of the 103 symbols. The least abundant on the external hull is the first symbol removed by the algorithm; then the new least abundant on the external hull is removed, and so on until no element remains. This procedure, which is the usual peeling procedure for data analysis, requires a special algorithm saving much computation time. The example below comes from the first factorial plane (see Table VI and Fig. 3).

A compound is a geometric mean of its atoms (a geometric mean is a convex linear combination), and every one of the 103 uniatomic compounds exists in the file. Thus, the external convex hull of the 103 elements is also the convex hull of the 3424428 compounds. The extremal compounds are those monoatomic compounds whose unique atom is extremal, such as C, H, or Np .

Comparison with Other CAS Files

The elemental composition statistics published ${ }^{1}$ give reference data to be compared with the 1978 file. The 1974, 1979 and 1987 files, and the file defined by difference

Table V
Peeling in the first factorial plane

Number of symbols in the hull	List of symbols in each hull (from outermost to innermost hulls)											
3	C	H	Np									
8	N	Li	Na	K	He	Cs	Fr	U				
3	O	Rb	Th									
11	B	Si	S	Cl	Br	Kr	Rn	Yb	No	Fm	m P	
11	F P	P	Se	Ar	Xe	Os	Hg	Er	Lr	Es	A	Am
11	Sn	Al	Ge	As	Fe	Ir	Re	Lu	Md	Cm	P	
9	Sb	Te	Ga	Ne	Co	Pt	Tm	Cf				
13	In	I	Cu	Ti	Ni	Mn	Ta	Gd	Dy	Ce	P	Pm
	Ac	Ra										
8	Be	Ag	Ru	V	Hf	Ho	Tb	Nd				
11	Mg	Zr	Rh	Ca	Cr	Au	W	Pr	Eu	Sm	Pb	Pb
5	Sr P	Pd	Zn	La								
8	Mo	Nb	Tc	Sc	Ba	Tl	Po	Y				
2	Cd	At										

[^0]between 1987 and 1979 data, were treated with correspondence analysis (the 1967 file was not considered because many elements were missing: see ref. ${ }^{1}$). The coordinates of the symbols gave similar shapes for successive hulls, either with or without weighed symbols (see e.g. Fig. 4).

We show the influence of a perturbation starting from a probable printing error for the occurrence of W in the CAS 1974's file ${ }^{1}$ (see Table VII). The value 134149 is then improbable, and does not match with the value computed with the percentage: 23768 W atoms. The cumulated sum of all the elements computed with the data also given in ref. ${ }^{1}$ is then 118283 553, which leads to 23790 W atoms.

The data sets, differing only by the number of W atoms, are compared; the variations of the 6 -dimensional coordinates of W are shown in Table VII. The relative variation on the last axis has the same magnitude as the relative variation of the number of W atoms, and the relative variation on the first axis has the same magnitude as the relative variation of the sum of all the 103 elements. Intermediate variations are observed on intermediate axes.

Fig. 3
Peeling of the 148815839 atoms in the first factorial plane (axis 1 vertical, axis 2 horizontal)

Table VI
Peeling of the weighed symbols in the first factorial plane

Ordering of the symbols, from the first to the last removed

Np, Fr, U, Th, Pu, Am, Pa, Bk, Es, Cf, Cm, Md, Lr, Fm, No, Ac, Pm, Ra, Nd, Ce, Sm, Eu, Pr, Tb, Ho, Dy, Gd, Tm, Lu, Er, Yb, La, Cs, Hg, W, Tl, Re, Pb, Bi, Ba, Po, Ta, Y, At, Pt, Rn, Hf, Ir, Au, Os, Cd, Be, Zn, Sc, Mo, Tc, Cr, Sr, Nb, Mn, Mg, Pd, Ca, V, He, Zr, Ni, Rh, Ag, Ti, Ru, Kr, Xe, In, Co, Cu, Ne, Fe, Ar, Ga, Rb, K, Sn, Sb, Te, B, I, Al, Ge, As, Br, Se, F, Cl, Na, P, S, Si, N, O, Li, C, H

Table VII
Influence of a perturbation on the coordinates

1974 file: 134149 W atoms ($0 \cdot 020113 \%$ of the 118173172 atoms)
1979 file: 44549 W atoms ($0 \cdot 022214 \%$ of the 200537175 atoms)
1987 file: 88739 W atoms (0.022481% of the 394730177 atoms)

Axis	134149 W atoms	23790 W atoms	23768 W atoms
	$-0.7714984 \mathrm{E}+00$	$-0.7732000 \mathrm{E}+00$	$-0.7732018 \mathrm{E}+00$
1	$0.1366503 \mathrm{E}+02$	$0.1117546 \mathrm{E}+02$	$0.1117443 \mathrm{E}+02$
2	$-0.3353852 \mathrm{E}+01$	$-0.4478106 \mathrm{E}+01$	$-0.4478546 \mathrm{E}+01$
3	$-0.7318581 \mathrm{E}+01$	$-0.6753468 \mathrm{E}+01$	$-0.6752183 \mathrm{E}+01$
4	$-0.1906342 \mathrm{E}+01$	$-0.3382746 \mathrm{E}+01$	$-0.3381835 \mathrm{E}+01$
5	$-0.3689612 \mathrm{E}+00$	$0.8848312 \mathrm{E}+00$	$0.8861454 \mathrm{E}+00$
6			

DISCUSSION AND CONCLUSION

This attempt to present a multivariate analysis of a large structural file shows how simple graphic displays may give characteristic pictures of the file intended for comparison with others. The information taken from the file was limited to atomic nature, giving a graphic representation of the Mendeleev table. A complete interpretation of the graphic Mendeleev table and its ordering of the symbols with peeling would require a 6-dimensional algorithm, numerically consolidated. Only 2 -dimensional examples were presented, in order to have simple outputs and results. The technique can be easily extended to all information registered in the file (and not only to atomic nature), using multiple correspondence analysis.

No problem was encountered in handling large amounts of data. Every contingency table can be computed with an execution time proportional to the number of individuals, without using storage areas (except for the contingency table itself, which is small compared to the large number of individuals). Every computation needed for simple or multiple correspondence analysis can then be performed without rereading the file.

Fig. 4
The 103 atomic symbols in the first factorial plane (CAS 1987) (axis 1 vertical, axis 2 horizontal)

It is also possible to define the 6-dimensional coordinates of each of the 3424428 compounds. A compound is a group of atoms, each atom having one of the 103 6 -dimensional coordinates. A correct representation of the compound will be the geometric mean of its atoms (this is a usual definition of groups in correspondence analysis); for example, every uniatomic compound will take the coordinates of its unique element. Moreover, there is a distance between every couple of compounds, so that a chemical synthesis can be represented by a positive valued graph. Now, unarbitrary numerical values are suitable for correlation attempts or classification algorithms.

The coordinates obtained here for compounds having the same elemental composition are identical, but a multiple correspondence analysis performed with variables describing expanded formulas will give separate points. This approach is possible each time a set of categorical variables is defined over a file, followed by multiple correspondence analysis. When structural descriptions of compounds are needed for QSAR or related correlation and classification problems, the problem is usually to convert these descriptions into continuous values, which are required for many analyses. This problem can be replaced by a new one: how to define a set of categorical variables to obtain a good representation of structural information. This new problem is easier to solve, because structural information has indeed a qualitative nature (e.g. fragments, chemical family, functional group), and not a numerical nature; multiple correspondence analysis can then be performed to give the expected continuous values.

REFERENCES

1. Stobaugh R. E.: J. Chem. Inf. Comput. Sci. 28, 180 (1988).
2. Benzecri J. P.: L'analyse des données, Tome 2: ISBN 2-04-007225-X or 2-04-007335-3. Dunod, Paris 1973.
3. Greenacre M., Hastie T.: J. Am. Stat. Assoc. 82, 437 (1987).
4. Barnett V.: J. R. Stat. Soc., A 139, 318 (1976).
5. Barnett V.: Interpreting Multivariate Data, Chap. 1. Wiley, New York 1981.
6. Holmes-Junca S.: Thesis. Montpellier II University, Montpellier 1985.

[^0]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

